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1. Introduction 

Many useful properties of hyperbolic diffeomorphisms are retained by the semihy- 
perbolic mappings that were introduced for local diffeomorphisms in [5] and ex- 
tended to Lipschitz mappings in [6] and [7]. See also Anosov [1] and Ombach [13], 
where related concepts are discussed. Walters [16] discusses similar properties for 
expansive shadowing homeomorphisms and there is a compilation of results in this 
direction in Aoki and Hiraide [2]. 

That semihyperbolic mappings, which are not necessarily invertible, also share 
many of these properties was shown in previous papers for expansivity [6] and 
shadowing [7]. In this paper the investigation is extended to include topological 
entropy and a weakened form of structural stability. The use of expansivity and 
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shadowing in this paper is principally similar to that in [2] and [16], but in the wider 
context of semihyperbolicity. 

Definitions of semihyperboticity and of shadowing and expansivity m-e recalled in 
Sections 2 and 3, respectively, along with statements of results from [6] and [7]. A 
result asserting a special form of robustness of topological entropy under perturba- 
tions of a semihyperbolic mapping is discussed in Section 4. The weakened form of 
structural stability--essentially the structural or topological stability of related shift 
operators--is discussed in Section 5. Qualitative results similar to those of the 
present paper can also be established in other contexts, for example, that of 
pre-hyperbolicity (Ruelle [t4]) or of nonsmooth hyperbolic homeomorphisms (Mane 
[10], Ombach [13]) using the principal tool of the paper, the concept of bi-shadowing. 
An advantage of the present approach is that simple explicit estimates can be 
combined with the study of nonsmooth Lipschitz mappings which need not be 
invertible. This last feature is especially important, for instance, in the analysis of 
control systems or of systems with hysteresis ([4], [8]) and in a theoretical investiga- 
tion of computer realizations of dynamical systems with chaotic behaviour. 

2. Semihyperbolie Systems in pd 

Let !" l be a fixed norm on N~ and let 2E be an open bounded subset of ~d. Denote 
by C = C(~,  Nd) the space of continuous bounded mappings g: ~ ~ R d with the 
norm Ilgllc = sup~,~lg(x)l and by 2 = ~ ( ~ ,  R d) the space of Lipschitz mappings 
f:  3C ~ Nd with the norm [[f[l~-- ]lf][c + Lip(f), where 

Lip( f )  - - inf{a:  I f (x)  - f ( y ) l  _< ~tx -Yl, x , y  ~ Y}. 

A four-tuNe s = (h,, A~,/xs, t-~,,,) of nonnegative real numbers is called a split if 

A s < i < A~, (1 - As)(a ~ - 1) > t~slX .. 

Let K be a compact subset of Y and let s = (h~, h,, /x~,/~) be a split. A 
mapping f E~c~(Y, N d) is said to be s-semihyperbolic on the set K if there exist 
positive real m~mbers k, ~ such that for each x ~ K there exists a splitting 
(decomposition) 

R e = E~ �9 E ;  (2 .1 )  

with corresponding projectors P] and P2 satisfying the following three properties: 

SHO, dim(E~) = dim(E~(x)) if x, f ( x )  ~ K. 

SH1. supx ~ K{[P~], IP:~'[} __< 

SH2, The inclusion x + u 

[P~x)( f ( x  

]PT(~)(f(x 

k. 

+ v ~ Y and the inequalities 

+ u + v )  - f ( x  + ~ + v ) ) l  _< A, ju - ~t, 

+ u + v )  - f ( x  + u + ~)) t  <_ re ly  - ~I, 

+ u + v )  - f ( x  + ~ + v ) ) l  <_ ~utu - at, 

+ u + v )  - f ( x  + u + ~) ) t  >_ a . l v  - ~l, 
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hold for all x ~ K with f ( x )  ~ K and all u, fi ~ E~, v, ~ E Ex" such that lul, I~l, Ivl, 

The first three inequalities in SH2 are just local Lipschitz conditions on the 
projections of the mapping f while the last one is an expansivity condition which 
implies a local invertibility in the unstable direction of f.  Note that continuity in x 
of  the splitting subspaces E~, E~' or of  the projectors P~, Pff is not assumed here nor 
is invariance of  the splitting subspaces, as is the case in the definition of hyperbolic- 
ity of  a diffeomorphism. The concept of  semihyperbolicity is, in a sense, similar to, 
but distinct from that of prehyperbolic mappings in [14]. 

The map f is said to be continuously semihyperbolic on K if it is s-semihyperbolic 
on K and, moreover,  the splitting (2.1) is continuous in x. A subset 9 - o f  ~(3~,  ~a )  
is called uniformly semihyperbotic on a compact subset K if there exist positive 
numbers  k, 6 and a split s such that  each mapping f ~ 3" is s-semihyperbotic on K 
with the same constants k, 6. In the following lemma c~(K)  denotes the open 
e-neighbourhood of the subset K. 

Lemma  1. Suppose that the mapping f ~ 2 ( Y ,  1~ d) is continuously semihyperbolic on a 
compact subset K c ~.  Then there exists an ~ > 0 such that C~(K) c Y and the set of  
mappings 

Y =  {g ~ Z ( Y ,  Ra) :  Hg - fl[ze < e} (2.2) 

is uniformly semihyperbolic on G,( K ) c Y. 

Proof. Let (2.1) be  a continuous decomposit ion of f such that propert ies S H 0 - S H 2  
hold for f with the split s* and positive constants k* and 6% L*. For  each x ~ ~ let 
~rK(x) be any one of nearest  points in K to x and consider the decomposit ion 

~a  = E~(~) @ E~(~), x ~ 3~. (2.3) 

Choose constants k > k*, 6 < 6% L > L* and some split s = {h,, h, ,  /~,  /z,} satisfy- 
ing h ~ > h * , ~ >  * A* * / ~ ,  h~ < ~,, tz, < p,~. Then there exists a small e > 0 such that  
each mapping in the set (2.2) satisfies propert ies SH0-S I f2  on the compact  set 
~Y~(K) c Y with the decomposit ion (2.3), split s and constants k, 6, L just intro- 
duced. [] 

3. Bi-shadowing and Expansivity 

A trajectory of a discrete-time dynamical system on the state space 3C generated by 
the mapping f :  Y ~ Y is a sequence x = {x~} c Y satisfying xn+ 1 = f ( x , )  for 
n = 0 ,1 ,2  . . . . .  n+ or n = - n _ , . . . , - 1 , 0 , 1  . . . . .  n+, where n_+< co A sequence 
Y = {Yn} c 3~ with 

[Yn+1 - f ( y ~ ) l  < y ,  (3.1) 

for such n and some 3' > 0, is a 3'-pseudotrajectory of the dynamical system. In both 
cases the qualifier "finite" may be appended when n_+ < ~ and "infinite" otherwise. 
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Let T r ( f ,  ~), 3') denote the totality of finite or infinite y-pseudotrajectories 
belonging entirely to a subset ~)__c_ Y. Since a trajectory can be regarded as a 
0-pseudotrajectory, the set of  all finite or infinite trajectories which belong entirely 
to ~ will be  denoted by T r ( f ,  ~ ,  0). In fact, a trajectory is also a y-pseudotrajectory 
for any 3' > 0, so T r ( f ,  ~ ,  0) c T r ( f ,  ~ ,  3') with strict inclusion as there are obvi- 
ously y-pseudotrajectories which are not trajectories. 

A dynamical system generated by a mapping f :  3; ~ Y is said to be bi-shadowing 
with positive parameters  a and /3 on a subset ~ of  Y if for any given finite 
pseudotrajectory y = {y~} ~ T r ( f ,  ~ ,  y )  with 0 _< y _</3 and any mapping g: 3~ ~ Y 
satisfying 

3' + Ilg - f l l c  -< 13 (3.2) 

there exists a traiectory x = {%,} E Tr(g ,  3;, 0) such that 

Ix~ - y ~ l  -< a (3 '  + tig - f l l c ) ,  (3.3) 

for all n for which y is defined. 
A trajectory x = {x,,} e T r ( f ,  ~ ,  0) for some subset ~ _ 3; is called a cycle o f  

period N if x N = x o, while a finite pseudotrajectory y = {y~}N= 0 ~ T r ( f ,  ~ ,  3") is 
called a 7-pseudocycle of  period N if lYN --Y0I < 3' in addition to the inequalities 
(3.1). The dynamical system generated by the mapping f :  3~ ~ 3; is said to be 
cyclically bi-shadowing with positive parameters oe and [3 on a subset ~ o f  3; if for any 
given pseudocycle y ~ T r ( f ,  ~ ,  3') with 0 < 3' < /3  and any mapping g: 3; ~ 3~ 
satisfying (3.2) there exists a proper  cycle x ~ Tr (g ,  3;, 0) of period N equal to that 
of y such that (3.3) holds for n = 0, 1 . . . . .  N. Note that the cycle x here is required 
only to be  in �9 rather than in the subset ~ and that N need not be a minimal 
period. 

The next theorem from [7] will be needed in the sequel. 

Theorem 1. L e t f  ~ 2 ( Y ,  ~d), f :  3~ ~ Y, be s-semihyperbolic on a compact subset 
o f  3; with constants k, 6. Then it is both hi-shadowing and cyclically bi-shadowing on 
with parameters 

Au - As + tXs + tZu 
a(s ,  k )  = k (3.4) 

( 1  - a , ) ( h .  - 1 )  - / z s / ,  . ' 

( 1  - a s ) ( %  - 1 )  - m~*u 
[3(s,k,  c3) = 6k -1 (3.5) 

max{A u -- I + /*s, 1 -- 3., + /,,} 

with respect to continuous mappings g: 3; ~ ~.  

The mapping f is said to be ~-expansive in 3; if for any infinite trajectories 
x, y ~ T r ( f ,  3;, 0) either x = y or sup_=<,, <~Lx~ - y~J >_ ~. A stronger version of the 
following theorem was proved in [6]. 

Theorem 2. Let f ~gC'(Y, ~d)  be s-semihyperbolic on a compact subset 2) o f  3; with 
constants k, 6. Then it is ~-expansive on ,~ with ~ = 6 /k .  
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4. An Extremal Property of Topological Entropy 

Let f:  3; ~ 3; be a continuous mapping, where 3~ is an open bounded subset of E d 

and let ~ be a compact subset of 3;. For a fixed positive integer N denote by 
Tr_+s(f, 3 )  the totality of trajectories x = {X_N, . . . , x  o . . . . .  x s} of f that are 
contained entirely in 3 and note that ON(X, ~) = sup_ s _< n_< NlXn --2~1 is a metric 
on T r i g (  f,  ~). 

The topological entropy go(f, 3 )  of f in 3 provides an index of how complicated 
the dynamics of f are in the set ~. There are various equivalent definitions [12] of 
go(f, 3),  and that used here is 

1 
go(f, 3 )  = lim limsup ~ C , ( T r + N (  f ,  3) ) ,  (4.1) 

e ~ 0  N ~  

where C~(Tr• 3))  is the e-capacity of the compact metric space 
(Tr_+N(f,~), PN), i.e, the binary logarithm of the maximal possible number of 
elements x (1) . . . . .  x ~p) in Tr _+ N(f, 3 )  such that pN(X (0, X (i~) > e for all i ~ j. A rich 
theory of topological entropy has been developed for hyperbolic mappings (cf. [12] 
and the references therein) and many of the results remain valid for semihyperbolic 
mappings too. The following theorem is illustrative of such possible generalizations. 

Theorem 3. Let f ~ ( ~ ,  R d) be continuously s-semihyperbolic on a compact ~ c 3; 
with constants k, 6 and f ( 3 )  = ~. Then go(g, G6/Ek(~)) >_ ~c~(f, 3) for each continu- 
ous mappingg: �9 ~-~ 3; satisfying Ilg - f l l c  < 8/(2ka(s ,  k)), where a(s, k) is defined 
by (3.4). 

Proof. A useful auxiliary concept in the proofs that follow is the e-entropy of f,  
which is defined for e > 0 as go~.(f, ~)  = lim SUpN_~ =(1/2N)C~(Tr • N(f, ~))" This is 
obviously nonincreasing in e, so 

go(f, 3 )  = lim go~(f, ~ )  = supgo~(f, ~) .  (4.2) 
e-~0 e > 0  

Two additional essentially well known results [12] are required to complete the 
proof. 

Lemma 2. Let f: ~ ~ 3 be a continuous ~-expansive mapping. Then for any ~l and 0 
with ~ < 0 < ~ there exists a positive integer N = N(~h O) such that pN(X,~,) > 0 holds 
foraU x,~ ~ Tr +_N(f, 3 )  with Ix 0 -20[  >- ~7- 

Proof. Suppose the contrary. Then for any positive integer N there exist trajectories 
x(N),~, (N) E Tr_+N(f, 3 )  satisfying I X(o s~ -- 2(oN)l >__ r I and PN(X(N),f~ (N~) < 0 < ~. 
By compactness, without loss of generality, the sequences {x m~} and {:~N)} can be 
assumed to converge componentwise to trajectories x* and i* ~ Tr +_~(f, 3). Then 

" * - x , l <  0 < ~ ? , n  = 0 , +  1 , + 2 , . .  which Ix~ - x~l > ~/, but at the same time I x~ ., 
contradicts the ~-expansivity of f. [] 

Lemma 3. Let f: 3 ~" ~ be a continuous ~-expansive mapping with f ( ~ )  = 3.  Then 
go(f, 3 )  = goo(f, ~)  holds for every 0 < ~. 
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Proof. Fix 0 with 0 < 0 < .~. Since g~(f, ~ )  is nonincreasing in ~, then by (4.2) it 
suffices to prove that 

g'n(f, 3)  <- go(f, 3)  (4.3) 

for rt > 0 sufficiently small. By Lemma 2 there exists an N(:q, 0) such that x , i  e 
Tr• ~), PN(X,~) >_ ~/ imply PN+N(n.o)(X,~) >_ 0 for any positive integer 
N. On the other hand, each trajectory x e Tr • u ( f ,  ~ )  is the natural restriction of a 
corresponding trajectory in Tr • (U+N(,. 0))(f, ~ )  because f ( ~ )  = ~. Hence 

Cn(Tr • ~)) <_ Co(Tr • ~)), 

from which immediately follows the desired inequality (4.3). c~ 

Returning to the proof of Theorem 3, let f and g be mappings as in the 
statement of the theorem and fix 0 for which 2a(s,  k)ltg - f l l c  < o < 6/k, where 
a(s, k) is defined by (3.4). Now f is ~-expansive in ~ with ~: = k-t6 by Theorem 2, 
so by Lemma 3, g ( f ,  ~ )  = g'o(f, ~). In view of (4.2), to comp_le_te the proof of the 
theorem it remains to prove that g~o(f,'3)<-g'~(g,G~/2~('~)), where o-= 0 -  
2c,(s, k)tlg -f[[c > 0. This in turn will follow from 

for any positive N. To prove (4.4) let {x O) . . . . .  x (p)} denote the maximal subset of 
Tr •  U(f, ~)satisfying PN(X (0, X (~)) >_ 0, i 4= j. By Theorem t for each such x (i) there 
exists a trajectory" y ( i ) e  Tr  ~N(g , Y) for which pN(y(0,X (~ _< otis, k)l lg-  flfc < 
3/2k. Hence y(OeTr+N(g, rYa/2k(~)), i = 1 . . . . .  p, and PNqV(0,yO~)>_ 0--  
2~(s, k)llg - f l l c  = cr for any j v~ i, from which (4.4) follows. This completes the 
proof of Theorem 3. [] 

5. Structural Stability Properties 

Denote b y . t h e  totality of all sequences x + {x~}~= _~ with xn E Y, n = 0, • 1, _+ 
2 . . . . .  As usual (see [10]) we will consider J a s  a metric space with metric 

1 
p(x,'~) = ~=-~2 4~ [x~  - 2,~[. (5.1) 

Since the set �9 is assumed to be bounded, then the metric p is well defined. Let S 
denote the shift operator in ~,, that is, (Sx)i = xi+ i for i = 0, • 1, • 2 . . . .  where 
x e~7. Let Tr  _+~(g, ~)  c f  be the totality of infinite trajectories y = {Yn} _c ~ of a 
mapping g E C(Y,N ~) belonging to the subset ~ _c Y and let ~)1, ~2 be closed 
subsets of Y such that g1(~1) = ~-)I and g2(~2) = ~2, where gl, g2 e C(Yc,Nd). 
The restriction gtlN~ is said to be a weakfactorization of the restriction g2[~2 if there 
exists a continuous (in the metric p) surjection �9 of the set Tr ~,(g~, "~'2) onto the 
set Tr • ~1)which is shift invariant, i.e., with q~ oS ~ So ~. 

Another closely connected concept is that of weak conjugacy. The restricted 
mappings gtI~?~ and gat~.)a are said to be weakly conjugate if there exists a continuous 
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one-to-one correspondence �9 between the set Tr+~(gl,~) 1) and Tr+=(g2,~2) 
which is shift invariant. By supposition, ~ 1, ~ 2 are closed subsets of the bounded set 
Y. Hence they are compact, and then the metric spaces Tr+=(gl ,~l )  and 
Tr+=(g2,~2) are compact too. Therefore the mapping �9 is homeomorphic. In 
other words, the restricted mappings gl]~ and g2[~ are weakly conjugate if the 
restrictions of the shift operator on the sets Tr+_=(g 1, ~1) and Tr+=(g2, ~2) are 
topologically conjugate. 

The notion of weak factorization extends an analogue of persistence to semihy- 
perbolic mappings. Weak conjugacy is a generalization of topological conjugacy of 
mappings and reduces to it in the case of invertible mappings [14]. The suitability of 
such generalizations in the analysis of noninvertible mappings is well known; see, for 
instance [14], Section 15.6. In particular, topological entropy is an invariant with 
respect to weak conjugacy and does not increase under weak factorization. 

A point x ~ ~ is called (~, ~)-chain recurrent for f if there exists an integer 
L = L ( e )  and points Xo, X 1 . . . . .  x L in ~ with x = x o = x  L such that [f(xi_ 1) 
-xi[ < e for i = 1, 2 , . . . ,  L [14]. Denote the totality of (e, ~)-chain recurrent points 
of f by CR(f, e, ~). The totality of ~-chain recurrent points for f is defined by 
CR(f ,~)  = N~>0CR(f , e ,~ ) .  Clearly if ~ ___ Y, then CR( f ,~ )  is compact and 
f(CR(f,  ~)) = CR(f, ~). 

Lemma 4. Let ~ be an open set with CR(f, ~)  c ~ c ~ ___ Y and let f ~ C(Y ,  Na). 
Then there exists a nondecreasing function q( e, f ) of e > 0 with q( e, f ) > 0 for e > 0 

C " and lim~_~ 0 q( e, f )  = q(O, f )  = 0 such that CR(f, e, ~)  __~q(~.f)(CR(f , ~)). In par- 
ticular, there r an e = e( f , ~ ) > 0 for which CR(f, e, ~)  c ~. 

Proof. Suppose the contrary. Then, for a certain eo > 0, there exists a sequence 
x (k) = {x(~ k)} of 1/k-pseudocycles of f with 

x (k) c_ ~ ,  x(o k) q~ N~0(CR(f, ~)) .  (5.2) 

Consider a limit point y of the sequence {X~o k)} By the first inclusion (5.2) and by the 
definition of chain recurrence, y ~ CR(f, ~), but by the second relation (5.2), 
y ~ G~0(CR(f, ~)). This contradiction proves the lemma. [] 

It is easy to estimate q(e, f )  and e( f ,  ~)  numerically in Lemma 4. 
Let ~ be an open set with ~ _  Y and let f ~ 2 ( Y , N  d) be continuously 

semihyperbolic on CR(f, ~)  with CR(f, ~ )  c ~. By Lemma 1 there exists a q0 = 
qo(f, ~) > 0 such that f is semihyperbolic in ~Yq0(CR(f, ~))  with a certain 6, k, s. 
Denote by a and /3 the corresponding constants (3.4) and (3.5). By Lemma 1 there 
exist also 7 = y ( f ,  Y) < e(f ,  ~)  such that every g with Hf - gl]_~ < y is semihyper- 
bolic in CR(f, 7, ~)- 

Theorem 4. Let ~ be an open set with ~ c • and let f ~ 2 ( Y ,  ~a) be continuously 
s-semihyperbolic in CR(f ,  ~ )  c ~ with some constants k, 6 . . I f  g ~ C(Y,  R e) with 
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Ilg - f i le  < e, where e is such that 

e < 6/ (2ktx) ,  q ( e ,  f )  < q0, :q(~)+ ~ ( C R ( f ,  ~ ) )  c ~ ,  

then the restricted mapping f l CR(y, ~) is a weak factorization of glcR~g, ~). 

(5.3) 

Theorem 5. Let ~ be an open set with ~ c ~ and let f ~ Z ( Y . ,  ~d) be continuously 
s-semihyperbotic in CR(f ,  ~ )  c ~ with some constants k, 6. I f  g ~.~q:( y , ~ d )  with 
l l g - f l l _ ~ <  ~ / ( f , ~ )  then the restricted mapping flcR~S,~) is weakly conjugate to 
glCR(g, ~). 

Theorem 4 is a weak form of persistence of semihyperbolic mappings, while 
Theorem 5 is a version of structural or  topological stability for such mappings. The 
explicit estimates of  the radii of  persistence and structural stability here are useful in 
applications, such as in investigations of  the effects of  finite machine arithmetic on 
the computed behavior of  chaotic mappings. Note that persistence is here a 
C~ property, while structural stability is Lipschitz robust. 

Proof of Theorem 4. Consider a mapping g e C(Y,  Ed) such that [If - g t l c  < e, 
where e satisfies (5.3). Denote  B(x, e)  = {3, ~ 32. Ix i - Yit -< e, i = 0, _+ 1, ___ 2 . . . .  } 
and define the mapping �9 by 

@(x) = B(x,  o~e) n Tr_+~(f, C R ( f ,  ~ ) ) ,  x ~ Tr_+~(g, CR(g ,  ~ ) ) , .  (5.4) 

We need to prove that qb is welt defined, i.e., that  the set 

B(x, a e )  N Tr  •  C R ( f ,  ~ ) )  (5.5) 

is nonempty and contains no more than one point. 
We shall prove first that the set (5.5) is nonempty for each x ~ Tr  +~(g, CR(g,  ~)).  

To  begin let us prove that for each positive integer m there exists a 1 /m-pseudo-  
cycle x (m) = { x ~ ' } ~  ') c CR(g,  1/m,  ~ )  of the mapping g, satisfying lx'~" - x,~_,~l < 
l / m ,  n = 0, 1 . . . . .  2m. By the continuity of g there exists 3'o > 0 such that each 
Y0-pseudotraject~ Y = Yo, Yl . . . . .  Y2m of g, with Y0 = x-re' satisfies sup_ m < ~ < mlYn 
- x n _  m] < 1/m. That  is, we can choose as x (m) any y0-pseudocycle of g satisfying 
[ x ~ - x _ , ~ t  < Y0 and x (m) c CR(g,  1 / m , ~ ) .  Such pseudocycles exist as x_,, 
CR(f ,  ~ )  and so the existence of x (m) is proved. Then each x (m), m = 1, 2 , . . .  is a 
(1 /m + l l f  - glJc)-pseudocycte of  f ,  i.e., x (m) c CR( f ,  1/m + tIf -g l l c ,  ~). Conse- 
quently, by Lemma 4, x (m) c ~qm(1/m+lff_gllC, f)(CR(._f, ~))  and so, by the inequality 
q(r  of (5.3), x ( ) C ~ ' q ( ~ , : ) ( C R ( f , ~ ) ) c : q o ( f , ~ ) ( C R ( f , ~ - ) )  for all 
sufficiently large m. Hence,  in view of the definition of qo(f, ~), the pseudocycles 
x (m) belong to the region of semihyperbolicity of  f for all sufficiently large m. From 
(3.4) and (3.5) it is seen that 8 / a  </3 .  Then due to the first inequality of  (5.3), 
e < /3 /2k  < fl holds. Therefore,  by the cyclic bi-shadowing of Theorem 1, for each 
x ('~) with sufficiently large m there exists a cycle y(m) of f with ]x~ m) - y~m)l < a e ,  
n = 0,1 . . . . .  2m. By the inclusion of (5.3), y(m) belongs to ~ and, since the 
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trajectory y(m) is periodic, it then in fact belongs to the set Tr_+~(f, C R ( f , ~ ) ) .  
Therefore,  by definition (5.1) of the metric p, any limit point of the m-shifted 
sequence S -my  (m~ belongs to the set (5.5). That  is, the set (5.5) is nonempty for each 
x ~ Tr  +~(g, CR(g,  ~)).  On the other hand, for any two trajectories y, ~ ~ B(x, a s )  
n Tr  +~(f, CR(f ,  ~)) ,  because of the first inequality of (5.3), the estimate lYi - )Sil < 
2o~e < 6 /k  holds. By Theorem 2, the set (5.5) thus contains no more  than one 
e lement ,  and so the mapping dO is well defined. 

W e  shall now prove that the mapping dp is a surjection of the set 
Tr  +~(g, CR(g,  ~ ) )  onto the set Tr  +~(f, CR( f ,  ~)).  In view of the definition of the 
mapping dp we need only to construct for each y ~ Tr  +~(f, CR( f ,  ~) )  an element 
x ~ Tr  +=(g, CR(g,  ~ ) )  with Ix i -Yi l  < c~e. As above, for each positive integer m 
there exist a 1 /m-pseudocycle  y(m) of the mapping f satisfying [ '~ Yn --Yn-ml < l / m ,  
n = 0, 1 . . . . .  2m. As was ment ioned above, due to the first inequality of (5.3) we 
have e < /3 .  So by the "cyclic part"  of Theorem 1 for sufficiently large m there exist 
cycles x (m~ of g satisfying Ix(~ m) - y~ '~ ]  < ~e,  n = 0, 1 . . . . .  2m. It remains to define 
x as a limit point of the sequence S-reX (m) in the metric (5.1). 

To prove the continuity of the mapping qb, we shall suppose the contrary. Then 
there exist x, x (m> ~ Tr  +=(g, CR(g,  ~)),  m = 1, 2 , . . . ,  such that 

p(X, X (m)) ~ 0, (5.6) 

but p(q?(x), qb(x(m~)) > rt for some ~/ > 0. In this case, without loss of generality, we 
may assume that 

I(dp(x))0 - (dp(x('~)))0l > r/, m = 1,2 . . . . .  (5.7) 

Choose a 0 satisfying 2c~e < 0 < 3/k; such 0 exists by (5.3). Since by Theorem 2 
the mapping g is ~:-expansive with s c = 6 / k  on the set CR(f ,  ~) ,  then by Lemma  2 
there exist as a positive integer N(r/, 0) not depending on m such that 

PN(n, 0)(alp(x), (I)(X(m))) = max {lYi -- y!m)]} > 0 (5.8) 
- N('q, O)<_i <_N(rl, O) 

holds whenever (5.7) is valid. At the same time, from the definition of the mapping 
qb it follows that pN(dP(X),X) ~ ozg for any x and integer N. Hence  

PN(n, 0) (alp(x)' Iffl0(x(m))) ~ PN(n, 0) ((I)(x), X) q- PN(~, 0) (X, x(m)) -~- PN(n, 0) (x(m)' (I)(x(m))) 

<_ 2c~e + PN('q, 0)(X, x(m))" 

Here  2 c ~  < 0 by the definition of 0 and pN(n,o)(X,X (m)) ~ 0 in view of (5.6). 
Therefore,  PN~n, 0) (qb(x), dP(X('~))) < 0 for sufficiently large m, which contradicts 
(5.8), and so the mapping dp must be continuous. 

The shift invariance identity dp o S =-S o 4p also follows from the definitions. 
Theorem 4 is thus completely proved. [] 

Proof of Theorem 5. Consider g ~ ( Y ,  ~d)  satisfying IIg -- fll_~ < y ( f ,  ~).  Intro- 
duce the family of mappings gx = hg + (1 - h)f, 0 _< h < 1. Clearly, 

Ilga - fll.~ -< I[g - fll_~ < 7 ( f ,  ~ ) .  (5.9) 
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Because the relation of weak conjugacy is transitive and the family {ga, 0 _< h < 1} is 
a compact subset of Zs Na), it remains to establish the following result: 

Lemma 5. There exists ~ > 0 such that g~[cR(g,, g) is weakly conjugate to ga, ca(g,., ~) 
forall A, A, ~ [0,1] with [A - h , [  < (. 

Proof. By (5.9) and the definition of y ( f ,  ~), for any A. e [0, 1] the mapping gaa is 
continuously semihyperbolic in CR(f, y ( f ,  ~), ~). Since y( f ,  ~)  < e(f ,  ~), then by 
Lemma 4, Cr(f, Y(f, ~), ~)  c ~. Again by (5.9), any chain recurrent point of gA. 
belonging to ~ is a y( f ,  ~)-chain recurrent point of f. Hence 

Ca(g ., c ca( f ,  v(f, c V. 

Then by Lemmas 1 and 4 there exist q0 > 0 and (~ > 0 such that all mappings 
ga(x), [h - h . I  < (1, are uniformly semihyperbolic with some split s and constants 
k, 6 in ~q0(CR(ga., ~)). 

By CR(ga., ~)  c ~ and Theorem 4, on the one hand, and the upper semiconti- 
nuity of the set CR(gA, ~)  is in A; on the other hand, there exists e > 0 such that 

e < 3 / ( 2 k a )  (5.10) 

and for each ga satisfying riga - ga, []c < e the following properties are true: 

(i) gA. ICR(g~.,~) is a weak factorization of gAtcR(ga,~) with the corresponding 
mapping 

d~a(x)=B(x, ae)  nTr+_~(ga , ,CR(ga , ,~) )  , x E Tr +~(g, CR(g, ~)) .  

(ii) Cr(ga, ~ )  c Oqo(CR(ga, , ~)). 

Now, choose ~'> 0 and A ~ [0,1] such that ~'< ~'I and IA - A,[ < ~" imply that 
[[ga -ga , [ [  < e. On account of property (i), ga,[CR(g~,,~) is a weak factorization of 
galcR(gA, g[)" It remains to prove that qb a is an injection and that the inverse mapping 
�9 A -1 is continuous. 

To prove that q)A is injective choose arbitrary x, i ~ Tr +~(ga, CR(ga, ~)) such 
that x ~ i. By property (ii) and Theorem 2 the mapping g~ is 8~k-expansive and so 

sup Ix/ - xil ~ 8 / k ,  
~ < i < o v  

x, ~ ~ Tr_+~(ga, CR(g~, ~) ) ,  x ~ ~. (5.11) 

On the other hand, by (5.10), property (i) and the inequality [h - h , [  < ~', the 
mapping d#x satisfies 

supl~x(x)i - xil < ae < 6 /2k  and supl(bA(~)i - s < ae < 8/2k.  (5.12) 
i i 
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Inequalities (5.11) and (5.12) imply 

sup I dPx(x)i - dP~(i)i] >_ suplxi - Nil - sup I dPa(x)i - x/I - sup ]I~[)A(N)i - -  Nil > O, 
i i i i 

i.e., the mapping q~a is an injection. 
Finally, we need to prove that ~ - 1  is continuous in metric (5.1), for which we 

shall follow the proof  of continuity of the mapping (5.4) above. Suppose the contrary. 
Then there exists a sequence y(m)E Tr_+=(gx,,CR(gA, , ~)), converging in the 

metric (5.1) to some y ~ Tr  +_=(gA,, CR(gA,, ~ ) )  such that x (m) = q~-l(y(m)) does not 
converge to x = ~ - l ( y ) .  Then without loss o f  generality we can suppose that 
Ix(o m) -x01  >_ ~/ for some positive T/. Choose 0 > 0  with 2c~e < 0 < 6 /k ;  such a 0 
exists by (5.10). Then by Theorem 2 and Lemma  2 there exists a positive integer 
N(T/, 0) satisfying 

ON(r/, 0)(X(m),  X) : max [ X} m) - -  xil >_ 0 > 2 o~e. 
- N('q, O)<_i<_N(~, O) 

From (5.11), (5.12) and the last inequality it follows that 

PN(n, 0)(Y (m), Y) -> PN(n, 0) (x(m),  X) --  PN(n, 0)(Y (m), x(m))  --  PN(n, 0)(Y' X) 

> 0 - 2 a e > 0 .  

The inequality obtained contradicts limm_~= p(y(m),y)= 0. Thus ~A -1 must be 
continuous. The proofs of  Lemma  5 and Theorem 5 are completed. 

6. Examples of Semihyperbolic Systems 

Semihyperbolic mappings were introduced in Section 2 in a formal manner.  Here  we 
briefly describe some concrete examples. To begin we consider two degenerate cases 
of semihyperbolic systems. First, suppose that for all x ~ K the subspace E~" is 
empty and, concomitantly, E~' = Nd. Then the class of semihyperbolic mappings is 
just that of the mappings which are locally contracting on some neighbourhood of K. 
On the other hand, if E~ = Q for all x ~ K and E~ = ~ ,  then we have the class of 
all locally expanding mappings. This class is wider than the usual ones considered; 
see [9]. 

Semihyperbolic mappings also arise naturally as Lipschitz perturbations of hyper- 
bolic mappings. We consider just a simple example. Let f be the canonical Smale 
horseshoe mapping on the square Q = [ - 1 , 1 ]  • [ - 1 , 1 ]  with compression factor 
1 / 5  and expansion factor 5 ([3], 3.5.1) and let h(x)  be a Lipschitz mapping on the 
square Q with Lip(h) < 2 /3 .  Then the mapping H ( x )  = f ( x )  + h(x )  is semihyper- 
bolic on any compact  K c Int(Q) with the natural splitting. If additionally Ilhllc < 
1 /5 ,  then clearly C R ( H , Q ) c  Int(Q). Note that H need not be invertible on 
CR(H,Q) .  

Another  class of examples can be constructed as follows. Let I be a smooth 
immersion of the standard k-torus T k into Nd, with d sufficiently large for such an 
immersion to be possible, let F A be an algebraic automorphism of T ~ generated by 
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an integer matrix A, and let 7r be the natural projection of a small neighbourhood 
U E R d of I (T k) onto I(T~). Then the mapping x ~ f ( x )  = IFAI-l(~r(x)) is semi- 
hyperbolic in each compact subset of  U. It must be emphasized that we do not 
suppose that Idet(A)[ = 1. Note also that, even if Idet(A)l = 1, f is not hyperbolic 
on U because the projection is not invertible. Examples of this type arise naturally 
in the analysis of systems with a large parameter. For a detailed analysis of this 
example and perturbations of  it, see [5], Section 5. 

The final example deals with generalizations of ideas of Marotto [11, 15] on 
snap-back repellers. Let x .  be a hyperbolic fixed point of a smooth mapping f in 
Nd. Denote by W s and W", respectively, the local stable and unstable manifolds of f 
at the point x . .  Suppose that there is a point x 0 ~ W u and a positive integer m 
with fm(x  o) = X.  and that the linear space DxoT ~ is transversal to T sx., where D x is 
the derivative of  fm at  the point x and T~, Tf are the respective tangent spaces to 
the stable and unstable manifolds. This mapping is clearly not invertible. Let 
E~ �9 Ex ~ be a continuous splitting such that E~ = Tf for x e W s and E~ = T2 for 
x ~ W". Since x0 ~ W u, there exist points x_ n, n > 0, with lim n_~= x_n = x .  and 
f ( x _  n) = x , +  1. We may suppose that Ix ~,+ll > IX_hi for n > 0. Let N be an 
arbitrary positive integer and write r(N)  = (Ix_NI + IX-N+ a I)/2. For arbitrary e > 0, 
denote U(N, e) = G~(N)(X , )  O G,(xo). For any positive integer M, define the map- 
ping FN, v, ~ on U( N, e )by  

~ f (x ) ,  i f x  ~C,.(N)(X.), 

FN'M'~ = ~ [fN+m(x),  if X ~ G,(X_N). 

If N is sufficiently large, then there exists a positive integer M such that for all 
sufficiently small e > 0 this mapping is semihyperbolic on any compact subset of 
U(N, e) with the splitting E~ �9 E~. The calculations are straightforward, so will be 
omitted. 
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